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Fig. 2. One of the images in LFPW. Overlaid, we show hand-labeled
points obtained using MTurk. Points are numbered to match Figs. 3
and 5.

examples that share a common appearance and configura-
tion. By clustering examples of body parts that are nearby in
configuration space, they create a nonparametric descrip-
tion of parts and their configurations across poses, which is
related to our own nonparametric approach. We use
RANSAC to apply our nonparametric shape model. While
using a Gaussian shape model, Li et al. [19] use RANSAC to
robustly initialize this model to find automobiles in
cluttered environments.

In this paper, we provide a method for localizing parts by
detecting finer scale fiducial points or microfeatures [23], as
shown in Fig. 2. Many fiducial point detectors include
classifiers that are trained to respond to a specific fiducial
(e.g., left corner of the left eye). These classifiers take as input
raw pixel intensities over a window or the output of a bank of
filters (e.g., wavelets [5], Gaussian derivative filters [4], [12],
Gabor filters [14], [28], or Haar-like features [7], [9]). These
local detectors are scanned over a portion of the image and
may return one or more candidate locations for the part or a
“score” at each location. This local detector is often a binary
classifier (feature or not feature). For example, Zhan et al. [31]
have applied the Viola-Jones [27] style detector to facial
features. Unlike face detection where the detector is scanned
over the entire image area and where Viola and Jones [27]
demonstrated efficient detection using a cascade of weak
classifiers, bounds on the location of a fiducial are readily
determined from the face detection box. Searching over a
smaller region that includes the actual part location reduces
the chance of false detections with minimal impact of missing
fiducials [7]. In addition, since fewer locations are tested,
more costly classifiers can be used. In this paper, we use
support vector machines (SVMs) [5] with a radial basis
function (RBF) kernel. Even so, false detections occur often,
even for well-trained classifiers, because different portions of
the image can have the appearance of the same fiducial
under some imaging conditions. For example, a common
error is for a “left corner of left eye” detector to respond to the
left corner of the right eye. Eckhardt et al. [9] achieve
robustness and handle greater pose variation by using a large
area of support for the detector covering, for example, an
entire eye or the nose with room to spare.

To better handle larger pose variation, constraints can be
established about the relative location of parts to each other
rather than the location of each part to the detector box. This
can be expressed as predicted locations, bounding regions,
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or as a conditional probability distribution of one part
location given another location [7]. Alternatively, the joint
probability distribution of all the parts can be used, and one
model is that they form a multivariate normal distribution
whose mean is the average location of each part. This is the
model underlying active appearance models and active
shape models, which have been used for facial feature point
detection in near frontal images [6], [7], [21]. Saragih et al.
[25] extend this to use a Gaussian mixture model, whereas
Everingham et al. [10] handle a wider range of pose,
lighting, and expression by modeling the joint probability of
the location of nine fiducials relative to the bounding box
with a mixture of Gaussian trees. Zhu and Ramanan [33]
also handle variations in pose using a mixture of trees
model in which parts are shared. Like [10], we do not
believe that a joint distribution of part locations over a wide
range of poses is adequately modeled by a single Gaussian,
but instead of a mixture model, we take a nonparametric
approach and use the part locations in a large number of
labeled exemplar images to model the joint distribution.

While a number of approaches balance local feature
detector responses on the image with prior global
information about the feature configurations [6], [7], [13],
[21], [25], [26], optimizing the resulting objective function
remains a challenge. The locations of some parts vary
significantly with expression (e.g., the mouth, eyebrows),
whereas others such as the eye corners and nose are more
stable. Consequently, some detection methods organize
their search to first identify the stable points; the locations
of the mouth points are then constrained, possibly through
a conditional probability, by the locations of stable points
[26]. This approach fails when the stable points cannot be
reliably detected, for example, when the eyes are hidden
by sunglasses or occluded by hair (a very common
occurrence). In contrast, our approach uses a RANSAC-
like sampling to randomly select among the different
types of parts and therefore tolerates occlusion of some
facial features.

A few authors have released software implementations
of their facial feature point detection method [10], [28], [33],
and because of the utility of detected fiducial points,
commercial products have become available by Betaface,
face.com, Luxand, Omron, PittPatt, and others. While some
of these systems can handle nonfrontal images and detect
up to 40 fiducials, the underlying methods are not disclosed
and evaluations of these methods have not been published.

3 FACE PART LOCALIZATION

In this section, we describe how we build our local and
global detectors using a training image set, described in
Section 5.1, with manually annotated part locations.

3.1 Local Detectors

For each part, we build a sliding window detector that can
be scanned over a region of the image. These sliding
window detectors are simply support vector machine
(SVM) classifiers with grayscale scale-invariant feature
transform (SIFT) [20] descriptors as features. We compute
the SIFT descriptor window at two scales: roughly one-
fourth and one-half the interocular distance. (In practice,
this is computed relative to the size of the face detector's
bounding box.) These two SIFT descriptors are then
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Fig. 3. Mean error of our fiducial detector on the LFPW dataset
compared to the mean variation in human labeling. The fiducial labels
are shown in Fig. 2, and the error is the fraction of interocular distance.
Our detector is almost always more accurate.

facial expressions, in the presence of occluding objects such
as sunglasses or microphones. Existing datasets for evalu-
ating part localization do not contain the range of
conditions that we aim to address in this paper, and so
we show results on the Labeled Faces in the Wild (LFW)
[15] dataset and on our new dataset, Labeled Face Parts in
the Wild (LFPW). Our most significant results are on these
datasets.

Since researchers have recently reported results on
BiolD, we present comparative results on BioID. Like most
datasets used to evaluate part localization on face images,
BioID contains near-frontal views and less variation in
viewing conditions than LFPW.

5.1 Data Sets

Our new LFPW dataset consists of 3,000 faces from images
downloaded from the web using simple text queries on sites
such as google.com, flickr.com, and yahoo.com. The 3,000
faces were detected using a commercial, off-the-shelf
(COTS) face detection system. Faces were excluded only if
they were incorrectly detected by the COTS detector or if
they contained text on the face. Note also that our COTS
face detector does not detect faces in or near profile, and so
these images are implicitly excluded from our dataset.

To obtain ground-truth data, 35 fiducial points on each
face were labeled by workers on Amazon Mechanical Turk
(MTurk). Of these 35 points, we only used 29 in this paper
and excluded points associated with the ears. Fig. 2
illustrates the location of these points. Each point was
labeled by three different MTurk workers. We used the
average location as ground truth for the fiducial point. A
subset of this data is made available at kbvt.com.

Fig. 6 shows example images from LFPW, along with our
results. There is a degree of subjectivity in the way humans
label the location of fiducial points in the images, and this is
seen in Fig. 3, which shows the variation among the MTurk
workers. Some parts like the eye corners are more
consistently labeled, whereas the brows and chin are
labeled less accurately.

Labeled Faces in the Wild (LFW) [15] is an existing large
dataset of real-world images gathered from news sites. It
consists of 13,233 images of 5,749 public figures, taken in
unconstrained settings and with noncooperative subjects. It
is commonly used for benchmarking face verification
algorithms, and as such has been used by many researchers.
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Fig. 4. The distribution of the asymmetry measure over images in the
LFPW and BiolD datasets. The BiolD dataset consists mostly of frontal
images, resulting in a sharp peak near the y-axis (i.e., nearly symmetric
faces), whereas the LFPW dataset contains many more off-frontal
faces, making it far more challenging.

It is qualitatively similar to our own LFPW dataset, but due
to its age (collected several years ago), it contains slightly
lower quality images in general.

The publicly available BiolD dataset contains
1,521 images, each showing a frontal view of a face of
one of 23 different subjects [16]. We used 17 fiducial points
that had been marked for the FGNet project, and used in
the mej; error measure as defined in [6]. This dataset has
been widely used, allowing us to benchmark our results
with prior work. Note that we trained using the LFPW
dataset and tested on BiolD in our experiments. There are
considerable differences in the viewing conditions of these
two datasets. Furthermore, the location of parts in LFPW
do not always match those of BiolD, and so we computed a
fixed offset between parts that were defined differently
(e.g., whereas the left and right nose points are outside of
the nose in LFPW, they are below the nose in BiolD). Fig. 8
shows some example images, along with our results.

To compare the challenge presented by different datasets,
we created a measure of the asymmetry of the fiducials in an
image. We reflect fiducials about a vertical line passing
through their centroid and compute the mean distance
between fiducial pairs that are symmetric in 3D (e.g., the
outer corner of the left and right eyes). For a frontal image
without occluded fiducials, the measure would be near zero.
For faces that are rotated in 3D or about the optical axis, the
asymmetry increases with the extent of rotation. Fig. 4
shows the distribution of the asymmetry measure for the
BiolD and LFPW datasets, and the distributions indicate
that LFPW is truly a more challenging dataset.

5.2 Results

In our experiments with LFPW, we randomly split the
dataset into 1,100 training images and 300 test images. (An
additional 1,600 images have been held out for subsequent
evaluations at future dates.) Training images were used to
train our SVM-based fiducial detectors and also served as
the exemplars for computing our global models Xj.

We evaluate the results of each localization by measuring
the distance from each localized part to the average of three
locations supplied by MTurk workers. Error is measured as
a fraction of the interocular distance to normalize for image
size. Fig. 3 shows the resulting error broken down by part.
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Fig. 9. Cumulative error distribution curves comparing our system to
several others on the BiolD dataset. All comparative results are from
[26]. We outperform all previously published results.

Fig. 6 shows some examples of errors of our system. In
Row 1, Cols. 2 and 5, local cues for the chin are indistinct,
and the chin is not localized exactly. Row 2, Col. 4 shows an
example in which the lower lip is incorrectly localized. This
can happen when the mouth is open and a row of teeth are
visible. We believe that these errors can be primarily
attributed to the local detectors; in future work, we plan
to make use of color-based representations that can more
easily distinguish between lips and teeth. And in Row 4,
Col. 1, the left corner of the left eyebrow is too low,
presumably due to occlusion from the hair.

Fig. 7 shows results of our part localizers on images from
the labeled faces in the wild (LFW) data set. These localizers
were trained using 6,080 manually labeled images from
Columbia’s PubFig [17] dataset. Fifty-five points on the face
were labeled, allowing for finer-grained localization on the
face. Note the consistency of localization despite changes in
the face box returned by OpenCV (blue rectangles). Our
mean error across all images of LFW and all 55 fiducial
points is 5.18 percent of the interocular distance.

We have also applied our part localizer to the BiolD faces
and show some example output images in Fig. 8. Results
have been reported on this dataset by a number of authors.
Fig. 9 shows the cumulative error distribution of the mej;
error measure (mean error of 17 fiducials) defined in [6].
Fig. 9 compares the results of our method to those reported
by authors in [6], [21], [26], [28] . Our results are similar to
but slightly better than those of Valstar et al. [26], who, to
our knowledge, report the best current results on this
dataset. We note that we train on a very different dataset
(LFPW) and use some fiducials whose locations are defined
a bit differently.

Finally, in Fig. 10, we return to LFPW and show the
cumulative error distribution of the me;; error measure for
our method applied to LFPW. Even though LFPW is a more
difficult dataset per Fig. 4, the cumulative error distribution
curve on LFPW is almost identical to our cumulative error
distribution curve on BiolD. (Note that the figures have
different scales along the z-axis.) Fig. 10 also shows the
cumulative error distribution when only the local detectors
are used and when locations are predicted solely from the
face box. While the local detectors are effective for most
fiducial points, there is a clear benefit from using the
consensus of global models. Many of the occluded fiducial
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Fig. 10. Cumulative error distribution of our system on the LFPW dataset
compared to locations predicted using the face detector box or found
with just our local detectors. (Note the different xz-axis scale from Fig. 9.)

points are incorrectly located by the local detectors, as
evidenced by the slow climb toward 1.0 of the red curve.

6 CONCLUSIONS

We have described a new approach to localizing parts in
face images. Our primary innovation is a Bayesian model
that combines local detector outputs with a consensus of
nonparametric global models for part locations, computed
from exemplars. Our localizer is accurate over a large range
of real-world variations in pose, expression, lighting,
makeup, and image quality. To train and test this system,
we introduce LFPW, a large, real-world dataset of hand-
labeled images. Our system demonstrates strong perfor-
mance on this dataset, significantly outperforming previous
research systems and a commercial system. We also
demonstrate state-of-the-art performance on the LFW and
BiolD datasets.
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